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Self-accelerating and self-breathing Bessel-like beams

along arbitrary trajectories

Juanying Zhao (ëëëïïïCCC)1,2, Peng Zhang (ÜÜÜ +++)2,3, Dongmei Deng ("""ÁÁÁrrr)2,4, Cibo Lou (¢¢¢aaaÅÅÅ)5,

Daohong Song (yyy���ùùù)5, Jingjiao Liu (444®®®���)1, and Zhigang Chen (������fff)2,5∗

1School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
2Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132, USA

3NSF Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA
4Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University,

Guangzhou 510631, China
5The MOE Key Laboratory of Weak Light Nonlinear Photonics and TEDA Applied Physics School,

Nankai University, Tianjin 300457, China
∗Corresponding author: zhigang@sfsu.edu

Received July 23, 2013; accepted September 16, 2013; posted online November 6, 2013

We theoretically and experimentally study self-accelerating and self-breathing Bessel-like beams that fol-
low arbitrary trajectories, including hyperbolic, hyperbolic secant, and three-dimensional (3D) spiraling
trajectories. The beams have an overall Bessel-like profile in transverse dimensions; however, the intensity
of their central main lobe breathes while traveling along a curved trajectory. Such beams can be readily
generated experimentally through appropriate phase modulation of the optical wavefront. The beams con-
tribute to the design of new families of self-accelerating beams.
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Optical beams along curved trajectories have been of
particular interest since self-accelerating (self-bending)
Airy beams were first proposed and observed several
years ago by Christodoulides’ group[1,2]. A general
method of finding self-accelerating beams is to obtain
exact solutions from either the Maxwell equations or
the time-independent Helmholtz equations. For exam-
ple, nondiffracting, circular, accelerating wave packets
of Maxwell’s equations were previously predicted and
demonstrated as typical large-angle, nonparaxial acceler-
ating beams[3−5]. Soon after, nonparaxial Mathieu and
Weber beams were proposed and proven; these beams
suggest that accelerating beams can be generalized to el-
liptic and parabolic trajectories[6−8]. Various approaches
have been developed in paraxial regimes for generating
accelerating beams along curved trajectories. For in-
stance, a snake-like beam with paraxial arbitrary focal
lines was created by a computer-generated hologram[9].
Spiraling zero-order Bessel beams traveling around a
straight line have also been designed and analyzed[10].
Bessel-like beams, which feature a symmetric and non-
spreading central main lobe, accelerating along arbitrary
curved trajectories were recently proposed and demon-
strated by specially designed optical wavefront phase
modulation[11,12]. Self-bending beams along the zigzag
or periodic trajectories have also been proposed[13] and
observed[14,15].

In the current study, we generate self-breathing accel-
erating optical beams propagating along arbitrary tra-
jectories based on our previous work on Bessel-like ac-
celerating beams[11,12]. Examples of trajectories include
the hyperbolic, hyperbolic secant, and three-dimensional
(3D) spiraling trajectories. These beams can be obtained
by engineering the phase of a Gaussian beam, following
the same approach of phase modulation developed by

Chremmos et al.[11] for generating accelerating Bessel-
like beams. Specifically, the beams feature an annulus
phase on their input plane, so that conical bundles of rays
with apexes that write a focal curve with pre-specified
shapes are formed. In the present study, by removing the
phase annulus alternatively (i.e., adding effective ampli-
tude modulation), the intensity of the resulting main lobe
of the Bessel-like beam exhibits a breathing or pulsating
feature as the intensity peak location alternately changes
between the main lobe and the outer rings during prop-
agation. Such self-breathing and self-accelerating beams
are of fundamental interest and may be utilized in prac-
tical applications.

Firstly, we simulate the propagation of a breathing self-
accelerating Bessel-like beam using the theoretical model
proposed in Ref. [11]. The complex amplitude of the light
field u(x, y, z), which propagates along the z-axis in the
Cartesian coordinate, is governed by the Fresnel integral:

u(x, y, z)=
1

2πiz

∫∫

u(x0, y0, 0)ei
(x−x0)2+(y−y0)2

2z dx0dy0,

(1)

where u(x0, y0,0)=exp[−(x2
0 + y2

0)/w2]exp[iQ1(x0,y0)] is
the initial complex amplitude distribution of the optical
field, w is the characteristic beam size, and Q1 is the
modified phase modulation from a specially designed Q
function[11], which can be obtained from

Q(x, y)=
k0

2

∫

z

0

{[f ′(ζ)]2+[g′(ζ)]2−(β/k0)
2}dζ

− k0
(f − x)2 + (g − y)2

2z
, (2a)

β2z2/k2
0 = [x−f(z)+zf ′(z)]2+[y−g(z)+zg′(z)]2, (2b)
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where k0 is the free space wavenumber; β is the transverse
normalized coefficient; [f(z), g(z)] is the predesigned tra-
jectory; f ′(z) and g′(z) are the derivatives of f(z) and
g(z) versus z, respectively; ζ is the variable. In the above
equations, z(x, y) consists of a series of expanding cir-
cles with a moving center [f(z)−zf ′(z), g(z)−zg ′(z)], as
shown in Fig. 1. In addition, Q is constituted by a se-
ries of smoothly continuous isocurves. Q1 results from Q
binarization, which is defined by

Q1=







































0 min Q 6 Q < min Q + c
1 min Q+c 6 Q<min Q+2c
0 min Q+2c 6 Q<min Q+3c
1 min Q+3c 6 Q<min Q+4c
...

...
{

0 2[n/2]=n
1 2[n/2] 6=n

min Q + nc 6 Q 6 max Q

,

(3)
where max Q and min Q are the maximum and mini-
mum values, respectively, of Q; c is a constant that sat-
isfies the criteria 0< c <(max Q -min Q)/2; the parame-
ter n = [max Q/c] is the maximum integer of max Q/c
(fractions are rounded down); n+1 is the number of the
annulus.

We readily obtain Q1 from the following equations in
our Matlab code.

Q′ = Q − 2c

[

Q

2c

]

, (4a)

Q1 =

{

1 Q′ > c

0 Q′ < c.
(4b)

For example, we show a phase Q in Fig. 2(a), which
smoothly decreases along the radial direction. After-
ward, we divide Q into a series of “period” rings Q′

(Fig. 2(b)), which is the remainder of Q when divided
by 2c (c=π). In this example, the “period” 2c is the
modulated width ∆Q for every ring. The values of the
period (between 0 and 2c) along the white dotted line are
shown in Fig. 2(d). Finally, a “well”-shaped phase Q1
(Fig. 2(c)) is obtained from Q′ by Eq. (4b). As shown
in Fig. 2(d), the values along the dotted line are 1 and
0 on the red and blue rings, respectively. This approach
yields the new phase Q1. In the phase Q1, the beams

Fig. 1. (Color online) Schematic of the principle. Rays emit-
ted from expanding circles z(x,y) on the input plane intersect
on the specified focal curve. Circles are removed alternatively
so that the main lobe breathes during propagation.

Fig. 2. (Color online) Theoretical analysis of the phase Q1.
(a) Original phase Q obtained from Eq. 2, (b) phase Q′, (c)
phase Q1, and (d) value of phases Q1 and Q′ along the white
line in (b) and (c).

Fig. 3. (Color online) Schematic of the experimental setup for
generating self-accelerating breathing optical beams via com-
puter generated holography. SLM: spatial light modulator; H:
computer generated hologram; L: lens; CCD: charge-coupled
device.

created in z >0 possess breathing transverse Bessel-like
field patterns along a desired trajectory function [f(z),
g(z), z] in free space.

An intuitive picture of our method is illustrated in Fig.
1. Any point along the focal line represents the center
of the beam, as constructed from the conical ray bundles
emitted from the expanding circle z(x, y) on the input
plane. The transverse beam profile takes a form close to
the Bessel function J0(r). The “periodically” modulated
phase Q1 suggests that these expanding circles are di-
vided into intermittent annuli. The alternate disappear-
ing main lobe results from the intermittently “removed”
annuli. In addition, the breathing trajectory interval is
determined by the annular width ∆z on the input plane.
The intensity peak location alternately changes between
the main lobe and the outer rings of the Bessel-like beam.

To experimentally demonstrate the breathing acceler-
ating beams, we illuminate a phase-only spatial light
modulator (SLM) with a plane wave. The SLM is
programmed by a hologram[16] with the desired phase
profile, which is obtained by computing the interference
between initial optical field u(x0, y0, 0) and a tilted plane
wave, as depicted in Fig. 3. Upon reflection from the
hologram, the coded phase information is reconstructed
via a spatial filtering 4f system. Afterward, we record
the transverse intensity patterns of the breathing acceler-
ating beams using a charge-coupled device (CCD) camera
at different propagation distances.

For the hyperbolic trajectory, the initial field is the
modulated Gaussian beam (w = 30) determined by the
binary phase (c =π/2) shown in Fig. 4(a). Numerical re-
sults of breathing beam propagation along a hyperbolic
trajectory are shown in Fig. 4(b). Figure 4(b) shows
that the breathing beam propagates along the hyper-
bolic trajectory. For a propagation distance of 200 cm,
nine quasi-periodic breaths are noted in the main lobe
of the beam. The quasi-period of the breath can be
controlled with ease by adjusting the modulated width
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Fig. 4. (Color online) Numerical and experimental demon-
strations of a self-accelerating breathing beam along
a hyperbolic trajectory. (a) Binary modulated input
phase for the optical breathing beam with f(z) =√

7.5×10−7z2−2.6×10−4z+0.05−
√

0.05, g(z)=0; (b) numer-
ically simulated side-view propagation of the generated beam;
(c)–(f) numerical (second row) and experimental (bottom
row) snapshots of the transverse intensity patterns taken at
planes marked by the dashed lines in (b).

Fig. 5. (Color online) Numerical and experimental demon-
strations of a self-accelerating breathing beam along a hyper-
bolic secant trajectory f(z)=0.06sech[0.007(z-315)], g(z)=0.
(a) Binary modulated input phase; (b) numerically simulated
side-view propagation of the generated beam. (c)–(f) numer-
ical (middle row) and experimental (bottom row) snapshots
of the transverse intensity patterns taken at planes marked
by the dashed lines (b).

c of the rings in the phase function Q1 (Fig. 4(a)).
Transverse intensity patterns obtained at different z are
shown in Figs. 4(c)–(f); these figures clearly illustrate
that the beams possess a Bessel-like intensity profile.
The main lobe appears and disappears alternately dur-
ing propagation as the intensity peak location changes
between the central lobe and outer rings of the Bessel-like
beam alternately during propagation. The experimental
transverse patterns, which are obtained by employing
the hologram shown in Fig. 3, are shown in the bottom
row. Good agreement between the experimental results
and our theoretical prediction is observed.

By following a similar procedure, we demonstrate that
breathing Bessel-like beams propagate along a hyper-
bolic secant trajectory, as presented in Fig. 5. The
binary phase with the modulated width c=π is shown
in Fig. 5(a), and the direct side view of the breathing
hyperbolic secant beam is shown in Fig. 5(b). The main
lobe obviously breathes along the trajectory, and the

beam exhibits an intermittent pattern while propagat-
ing along the hyperbolic secant trajectory. Compared
with a Gaussian beam (not shown here), the measured
transverse breathing main lobe of these beams shows
no diffraction during the entire course of propagation.
Again, the experimental results agree well with the nu-
merical results.

We further illustrate that self-accelerating breathing
beams can follow a 3D trajectory in free space. A typi-
cal trajectory is shown in Fig. 6; for this case, we have
f(z)=0.04tanh[0.02(z-70)]+0.04 (in the x− z plane) and
g(z)=0.046sech[0.02(z-70)] (in the y − z plane). The
modulated period of the phase is 2π. The experimental
results match those from theory with the predesigned
trajectory. Figure 6(a) indicates clearly that the beam
bends in both x and y directions. In addition, the inten-
sity peak location alternately changes between the main
lobe and the outer rings along the propagation direction.

Figures 7(a) and (b) show the corresponding intensity
distributions of self-accelerating Bessel-like beams along
the hyperbolic (Fig. 4) and hyperbolic secant (Fig. 5)
trajectories, respectively. By analyzing the central inten-
sity variation of these beams, the breathing intervals are
observed to slightly differ, especially for the beam prop-
agating along a hyperbolic trajectory (Fig. 7(a)). The
center point of the beam on the trajectory is constructed
from conical ray bundles emitted from the corresponding
annulus. The non-periodic breathing trajectory may be
caused by variations in the annular width ∆z on the
input plane. Based on this analysis, self-accelerating
and periodically breathing beams may be generated by
applying a periodic binary z(x,y) as an amplitude mod-
ulator on Bessel-like beams. We leave these issues for
future studies.

In conculsion, we theoretically design and experimen-
tally demonstrate the propagation of self-accelerating
and self-breathing Bessel-like beams along hyperbolic,
hyperbolic secant, and 3D trajectories. The re-
configurable pulsating trajectories, combined with the
nondiffracting and self-healing features of accelerating
beams, may be particularly useful in various applications,
such as optical trapping and particle manipulation[17−21].
Our results present novel designs of exotic optical beams,
which may contribute new features and activities to the
subject area of self-accelerating beams[22].

Fig. 6. (Color online) Numerical and experimental demon-
stration of a self-accelerating breathing beam along a 3D
curved trajectory. (a) Schematic of the predesigned breathing
beam along the 3D trajectory; (b–e) numerical (left column)
and experimental (right column) transverse patterns taken at
different marked positions in (a), where the cross marks the
center of the reference non-accelerating Gaussian beam.
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Fig. 7. (Color online) Intensity distribution of self-acceler-
ating breathing beam along hyperbolic and hyperbolic secant
trajectories. (a) Intensity variation of self-accelerating breath-
ing beam along hyperbolic trajectory; (b) intensity variation
of self-accelerating breathing beam along hyperbolic secant
trajectory.
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